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Computing Scores in a Complete Search System 

Efficient scoring and ranking 

We begin by recapping the algorithm of Figure 6.14 . For a query such as 

 jealous gossip, two observations are immediate: 

1. The unit vector  has only two non-zero components. 

2. In the absence of any weighting for query terms, these non-zero components 

are equal - in this case, both equal 0.707. 

For the purpose of ranking the documents matching this query, we are really 

interested in the relative (rather than absolute) scores of the documents in the 

collection. To this end, it suffices to compute the cosine similarity from each 

document unit vector  to  (in which all non-zero components of the query 

vector are set to 1), rather than to the unit vector . For any two 

documents  

 

(34) 

 

 

For any document , the cosine similarity  is the weighted sum, over 

all terms in the query , of the weights of those terms in . This in turn can be 

computed by a postings intersection exactly as in the algorithm of Figure 6.14 , 

with line 8 altered since we take  to be 1 so that the multiply-add in that step 

becomes just an addition; the result is shown in Figure 7.1 . We walk through the 

postings in the inverted index for the terms in , accumulating the total score for 
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each document - very much as in processing a Boolean query, except we assign a 

positive score to each document that appears in any of the postings being traversed. 

As mentioned in Section 6.3.3 we maintain an idf value for each dictionary term 

and a tf value for each postings entry. This scheme computes a score for every 

document in the postings of any of the query terms; the total number of such 

documents may be considerably smaller than . 

 

Figure 7.1: A faster algorithm for vector space scores. 

Given these scores, the final step before presenting results to a user is to pick out 

the  highest-scoring documents. While one could sort the complete set of scores, 

a better approach is to use a heap to retrieve only the top  documents in order. 

Where  is the number of documents with non-zero cosine scores, constructing 

such a heap can be performed in  comparison steps, following which each of 

the  highest scoring documents can be ``read off'' the heap with 

 comparison steps. 
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Inexact top K document retrieval 

Thus far, we have focused on retrieving precisely the  highest-scoring documents 

for a query. We now consider schemes by which we produce  documents that 

are likely to be among the  highest scoring documents for a query. In doing so, 

we hope to dramatically lower the cost of computing the  documents we output, 

without materially altering the user's perceived relevance of the top  results. 

Consequently, in most applications it suffices to retrieve  documents whose 

scores are very close to those of the  best. In the sections that follow we detail 

schemes that retrieve  such documents while potentially avoiding computing 

scores for most of the  documents in the collection. 

Such inexact top-  retrieval is not necessarily, from the user's perspective, a bad 

thing. The top  documents by the cosine measure are in any case not necessarily 

the  best for the query: cosine similarity is only a proxy for the user's perceived 

relevance. In Sections 7.1.2 -7.1.6 below, we give heuristics using which we are 

likely to retrieve  documents with cosine scores close to those of the top 

 documents. The principal cost in computing the output stems from computing 

cosine similarities between the query and a large number of documents. Having a 

large number of documents in contention also increases the selection cost in the 

final stage of culling the top  documents from a heap. We now consider a series 

of ideas designed to eliminate a large number of documents without computing 

their cosine scores. The heuristics have the following two-step scheme: 

1. Find a set  of documents that are contenders, where . 

 does not necessarily contain the  top-scoring documents for the query, 

but is likely to have many documents with scores near those of the top . 

2. Return the  top-scoring documents in . 

From the descriptions of these ideas it will be clear that many of them require 
parameters to be tuned to the collection and application at hand; pointers to 
experience in setting these parameters may be found at the end of this chapter. It 
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should also be noted that most of these heuristics are well-suited to free text 
queries, but not for Boolean or phrase queries. 

 

Champion lists 
The idea of champion lists (sometimes also called fancy lists or top docs) is to 

precompute, for each term  in the dictionary, the set of the  documents with 

the highest weights for ; the value of  is chosen in advance. For tf-idf 

weighting, these would be the  documents with the highest tf values for term . 

We call this set of  documents the champion list for term . 

Now, given a query  we create a set  as follows: we take the union of the 

champion lists for each of the terms comprising . We now restrict cosine 

computation to only the documents in . A critical parameter in this scheme is the 

value , which is highly application dependent. Intuitively,  should be large 

compared with , especially if we use any form of the index elimination described 

in Section 7.1.2 . One issue here is that the value  is set at the time of index 

construction, whereas  is application dependent and may not be available until 

the query is received; as a result we may (as in the case of index elimination) find 

ourselves with a set  that has fewer than  documents. There is no reason to 

have the same value of  for all terms in the dictionary; it could for instance be set 

to be higher for rarer terms. 
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Impact ordering 

In all the postings lists described thus far, we order the documents consistently by 
some common ordering: typically by document ID but in Section 7.1.4 by static 
quality scores. As noted at the end of Section 6.3.3 , such a common ordering 
supports the concurrent traversal of all of the query terms' postings lists, 
computing the score for each document as we encounter it. Computing scores in 
this manner is sometimes referred to as document-at-a-time scoring. We will now 

introduce a technique for inexact top-  retrieval in which the postings are not all 
ordered by a common ordering, thereby precluding such a concurrent traversal. 
We will therefore require scores to be ``accumulated'' one term at a time as in 
the scheme of Figure 6.14 , so that we have term-at-a-time scoring. 

 

Static quality scores and ordering 

We now further develop the idea of champion lists, in the somewhat more 

general setting of static quality scores . In many search engines, we have available 

a measure of quality  for each document  that is query-independent and 

thus static. This quality measure may be viewed as a number between zero and 

one. For instance, in the context of news stories on the web,  may be derived 

from the number of favorable reviews of the story by web surfers. otherindexing 

provides further discussion on this topic, as does Chapter 21 in the context of web 

search. 

The net score for a document  is some combination of  together with the 

query-dependent score induced (say) by (27). The precise combination may be 

determined by the learning methods of Section 6.1.2 , to be developed further in 

Section 15.4.1 ; but for the purposes of our exposition here, let us consider a 

simple sum: 

 

(35) 
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In this simple form, the static quality  and the query-dependent score from 

(24) have equal contributions, assuming each is between 0 and 1. Other relative 

weightings are possible; the effectiveness of our heuristics will depend on the 

specific relative weighting. 

First, consider ordering the documents in the postings list for each term by 

decreasing value of . This allows us to perform the postings intersection 

algorithm of Figure 1.6 . In order to perform the intersection by a single pass 

through the postings of each query term, the algorithm of Figure 1.6 relied on the 

postings being ordered by document IDs. But in fact, we only required that all 

postings be ordered by a single common ordering; here we rely on the  values 

to provide this common ordering. This is illustrated in Figure 7.2 , where the 

postings are ordered in decreasing order of . 

 A static quality-ordered index.In this example we assume that Doc1, Doc2 and 

Doc3 respectively have static quality scores . 

The first idea is a direct extension of champion lists: for a well-chosen value , we 

maintain for each term  a global champion list of the  documents with the 

highest values for . The list itself is, like all the postings lists 

considered so far, sorted by a common order (either by document IDs or by static 

quality). Then at query time, we only compute the net scores (35) for documents in 

the union of these global champion lists. Intuitively, this has the effect of focusing 

on documents likely to have large net scores. 
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We conclude the discussion of global champion lists with one further idea. We 

maintain for each term  two postings lists consisting of disjoint sets of 

documents, each sorted by  values. The first list, which we call high, contains 

the  documents with the highest tf values for . The second list, which we 

call low, contains all other documents containing . When processing a query, we 

first scan only the high lists of the query terms, computing net scores for any 

document on the high lists of all (or more than a certain number of) query terms. If 

we obtain scores for  documents in the process, we terminate. If not, we continue 

the scanning into the low lists, scoring documents in these postings lists. This idea 

is developed further in Section 7.2.1 . 

 

 

 

 

Cluster pruning 
In cluster pruning we have a preprocessing step during which we cluster the 

document vectors. Then at query time, we consider only documents in a small 

number of clusters as candidates for which we compute cosine scores. 

Specifically, the preprocessing step is as follows: 

1. Pick  documents at random from the collection. Call these leaders. 
2. For each document that is not a leader, we compute its nearest leader. 

We refer to documents that are not leaders as followers. Intuitively, in the 

partition of the followers induced by the use of  randomly chosen leaders, 

the expected number of followers for each leader is . Next, query 

processing proceeds as follows: 

1. Given a query , find the leader  that is closest to . This entails 

computing cosine similarities from  to each of the  leaders. 

https://nlp.stanford.edu/IR-book/html/htmledition/tiered-indexes-1.html#sec:tiered


2. The candidate set  consists of  together with its followers. We 
compute the cosine scores for all documents in this candidate set. 

The use of randomly chosen leaders for clustering is fast and likely to reflect the 

distribution of the document vectors in the vector space: a region of the vector 

space that is dense in documents is likely to produce multiple leaders and thus a 

finer partition into sub-regions. This illustrated in Figure 7.3 . 

 

Figure 7.3: Cluster pruning. 

Variations of cluster pruning introduce additional parameters  and , both of 

which are positive integers. In the pre-processing step we attach each follower to 

its  closest leaders, rather than a single closest leader. At query time we consider 

the  leaders closest to the query . Clearly, the basic scheme above corresponds 

to the case . Further, increasing  or  increases the likelihood of 

finding  documents that are more likely to be in the set of true top-scoring 

 documents, at the expense of more computation. We reiterate this approach when 

describing clustering in Chapter 16 (page 16.1 ). 
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Tiered indexes 
We mentioned in Section 7.1.2 that when using heuristics such as index 

elimination for inexact top-  retrieval, we may occasionally find ourselves with a 

set  of contenders that has fewer than  documents. A common solution to 

this issue is the user of tiered indexes , which may be viewed as a generalization 

of champion lists . We illustrate this idea in Figure 7.4 , where we represent the 

documents and terms of Figure 6.9 . In this example we set a tf threshold of 20 for 

tier 1 and 10 for tier 2, meaning that the tier 1 index only has postings entries 

with tf values exceeding 20, while the tier 2 index only has postings entries with tf 

values exceeding 10. In this example we have chosen to order the postings entries 

within a tier by document ID. 

 Tiered indexes.If we fail to 

get  results from tier 1, query processing ``falls back'' to tier 2, and so on. 

Within each tier, postings are ordered by document ID. 
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Query-term proximity 

Especially for free text queries on the web (Chapter 19 ), users prefer a document 

in which most or all of the query terms appear close to each other, because this is 

evidence that the document has text focused on their query intent. Consider a query 

with two or more query terms, . Let  be the width of the smallest 

window in a document  that contains all the query terms, measured in the number 

of words in the window. For instance, if the document were to simply consist of 

the sentence The quality of mercy is not strained, the smallest window for the 

query strained mercy would be 4. Intuitively, the smaller that  is, the better 

that  matches the query. In cases where the document does not contain all of the 

query terms, we can set  to be some enormous number. We could also consider 

variants in which only words that are not stop words are considered in 

computing . Such proximity-weighted scoring functions are a departure from 

pure cosine similarity and closer to the ``soft conjunctive'' semantics that Google 

and other web search engines evidently use. 

How can we design such a proximity-weighted scoring function to depend on ? 

The simplest answer relies on a ``hand coding'' technique we introduce below in 

Section 7.2.3 . A more scalable approach goes back to Section 6.1.2 - we treat the 

integer  as yet another feature in the scoring function, whose importance is 

assigned by machine learning, as will be developed further in Section 15.4.1 . 

We now consider a simple case of weighted zone scoring, where each document 

has a title zone and a body zone. Given a query  and a document , we use the 

given Boolean match function to compute Boolean variables  and , 

depending on whether the title (respectively, body) zone of  matches query . 

For instance, the algorithm in Figure 6.4 uses an AND of the query terms for this 

Boolean function. We will compute a score between 0 and 1 for each (document, 

query) pair using  and  by using a constant , as follows: 

 

 

(14) 
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We now describe how to determine the constant  from a set of training examples, 

each of which is a triple of the form . In each training 

example, a given training document  and a given training query  are assessed 

by a human editor who delivers a relevance judgment  that is 

either Relevant or Non-relevant. This is illustrated in Figure 6.5 , where seven 

training examples are shown. 

 

Figure 6.5: An illustration of training examples. 

For each training example  we have Boolean values  and  that 

we use to compute a score from (14) 

 

 

(15) 

 

 

We now compare this computed score to the human relevance judgment for the 

same document-query pair ; to this end, we will quantize 

each Relevant judgment as a 1 and each Non-relevant judgment as a 0. Suppose 

that we define the error of the scoring function with weight  as 

 

(16) 

 

 

where we have quantized the editorial relevance judgment  to 0 or 1. Then, 

the total error of a set of training examples is given by 

 

(17) 
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The problem of learning the constant  from the given training examples then 

reduces to picking the value of  that minimizes the total error in (17). 

Picking the best value of  in (17) in the formulation of Section 6.1.3 reduces to 

the problem of minimizing a quadratic function of  over the interval . This 

reduction is detailed in Section 6.1.3 
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Information retrieval system evaluation 

To measure ad hoc information retrieval effectiveness in the standard way, we 

need a test collection consisting of three things: 

1. A document collection 

2. A test suite of information needs, expressible as queries 

3. A set of relevance judgments, standardly a binary assessment of 

either relevant or nonrelevant for each query-document pair. 

The standard approach to information retrieval system evaluation revolves around 

the notion of relevant and nonrelevant documents. With respect to a user 

information need, a document in the test collection is given a binary classification 

as either relevant or nonrelevant. This decision is referred to as the gold 

standard or ground truth judgment of relevance. The test document collection and 

suite of information needs have to be of a reasonable size: you need to average 

performance over fairly large test sets, as results are highly variable over different 

documents and information needs. As a rule of thumb, 50 information needs has 

usually been found to be a sufficient minimum. 

Relevance is assessed relative to an , not a query. For example, an information 

need might be: 

Information on whether drinking red wine is more effective at reducing your risk 

of heart attacks than white wine. 

This might be translated into a query such as: 

wine and red and white and heart and attack and effective 

A document is relevant if it addresses the stated information need, not because it 

just happens to contain all the words in the query. This distinction is often 

misunderstood in practice, because the information need is not overt. But, 

nevertheless, an information need is present. If a user types python into a web 

search engine, they might be wanting to know where they can purchase a pet 

python. Or they might be wanting information on the programming language 

Python. From a one word query, it is very difficult for a system to know what the 

information need is. But, nevertheless, the user has one, and can judge the returned 

results on the basis of their relevance to it. To evaluate a system, we require an 

overt expression of an information need, which can be used for judging returned 

documents as relevant or nonrelevant. At this point, we make a simplification: 

relevance can reasonably be thought of as a scale, with some documents highly 

relevant and others marginally so. But for the moment, we will use just a binary 

decision of relevance. We discuss the reasons for using binary relevance judgments 

and alternatives in Section 8.5.1 . 
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Many systems contain various weights (often known as parameters) that can be 

adjusted to tune system performance. It is wrong to report results on a test 

collection which were obtained by tuning these parameters to maximize 

performance on that collection. That is because such tuning overstates the expected 

performance of the system, because the weights will be set to maximize 

performance on one particular set of queries rather than for a random sample of 

queries. In such cases, the correct procedure is to have one or more development 

test collections , and to tune the parameters on the development test collection. The 

tester then runs the system with those weights on the test collection and reports the 

results on that collection as an unbiased estimate of performance. 

 

 

Standard test collections 

Here is a list of the most standard test collections and evaluation series. We focus 

particularly on test collections for ad hoc information retrieval system evaluation, 

but also mention a couple of similar test collections for text classification. 

The Cranfield collection. This was the pioneering test collection in allowing 

precise quantitative measures of information retrieval effectiveness, but is 

nowadays too small for anything but the most elementary pilot experiments. 

Collected in the United Kingdom starting in the late 1950s, it contains 1398 

abstracts of aerodynamics journal articles, a set of 225 queries, and exhaustive 

relevance judgments of all (query, document) pairs. 

 

Text Retrieval Conference (TREC) . The U.S. National Institute of Standards and 

Technology (NIST) has run a large IR test bed evaluation series since 1992. Within 

this framework, there have been many tracks over a range of different test 

collections, but the best known test collections are the ones used for the TREC Ad 

Hoc track during the first 8 TREC evaluations between 1992 and 1999. In total, 

these test collections comprise 6 CDs containing 1.89 million documents (mainly, 

but not exclusively, newswire articles) and relevance judgments for 450 

information needs, which are called topics and specified in detailed text passages. 

Individual test collections are defined over different subsets of this data. The early 

TRECs each consisted of 50 information needs, evaluated over different but 

overlapping sets of documents. TRECs 6-8 provide 150 information needs over 

about 528,000 newswire and Foreign Broadcast Information Service articles. This 

is probably the best subcollection to use in future work, because it is the largest 

and the topics are more consistent. Because the test document collections are so 

large, there are no exhaustive relevance judgments. Rather, NIST assessors' 

relevance judgments are available only for the documents that were among the 



top  returned for some system which was entered in the TREC evaluation for 

which the information need was developed. 

In more recent years, NIST has done evaluations on larger document collections, 

including the 25 million page GOV2 web page collection. From the beginning, the 

NIST test document collections were orders of magnitude larger than anything 

available to researchers previously and GOV2 is now the largest Web collection 

easily available for research purposes. Nevertheless, the size of GOV2 is still more 

than 2 orders of magnitude smaller than the current size of the document 

collections indexed by the large web search companies. 

NII Test Collections for IR Systems ( NTCIR ). The NTCIR project has built 

various test collections of similar sizes to the TREC collections, focusing on East 

Asian language and cross-language information retrieval , where queries are made 

in one language over a document collection containing documents in one or more 

other languages. See: http://research.nii.ac.jp/ntcir/data/data-en.html 

 

Cross Language Evaluation Forum ( CLEF ). This evaluation series has 

concentrated on European languages and cross-language information retrieval. 

See: http://www.clef-campaign.org/ 

and Reuters-RCV1. For text classification, the most used test collection has been 

the Reuters-21578 collection of 21578 newswire articles; see Chapter 13 , 

page 13.6 . More recently, Reuters released the much larger Reuters Corpus 

Volume 1 (RCV1), consisting of 806,791 documents; see Chapter 4 , page 4.2 . Its 

scale and rich annotation makes it a better basis for future research. 

20 Newsgroups . This is another widely used text classification collection, 

collected by Ken Lang. It consists of 1000 articles from each of 20 Usenet 

newsgroups (the newsgroup name being regarded as the category). After the 

removal of duplicate articles, as it is usually used, it contains 18941 articles. 
 

 

 

 

 

 

 

 

Evaluation of unranked retrieval sets 
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Given these ingredients, how is system effectiveness measured? The two most 

frequent and basic measures for information retrieval effectiveness are precision 

and recall. These are first defined for the simple case where an IR system returns a 

set of documents for a query. We will see later how to extend these notions to 

ranked retrieval situations. 

Precision ( ) is the fraction of retrieved documents that are relevant 

 

(36) 

 

 

Recall ( ) is the fraction of relevant documents that are retrieved 

 

(37) 

 

 

These notions can be made clear by examining the following contingency table: 

 
Then: 

  
 

(38) 

  
 

(39) 

 
 

An obvious alternative that may occur to the reader is to judge an information 

retrieval system by its accuracy , that is, the fraction of its classifications that are 

correct. In terms of the contingency table 

above, . This seems plausible, since there 

are two actual classes, relevant and nonrelevant, and an information retrieval 

system can be thought of as a two-class classifier which attempts to label them as 

such (it retrieves the subset of documents which it believes to be relevant). This is 

precisely the effectiveness measure often used for evaluating machine learning 

classification problems. 

There is a good reason why accuracy is not an appropriate measure for information 

retrieval problems. In almost all circumstances, the data is extremely skewed: 

normally over 99.9% of the documents are in the nonrelevant category. A system 

tuned to maximize accuracy can appear to perform well by simply deeming all 



documents nonrelevant to all queries. Even if the system is quite good, trying to 

label some documents as relevant will almost always lead to a high rate of false 

positives. However, labeling all documents as nonrelevant is completely 

unsatisfying to an information retrieval system user. Users are always going to 

want to see some documents, and can be assumed to have a certain tolerance for 

seeing some false positives providing that they get some useful information. The 

measures of precision and recall concentrate the evaluation on the return of true 

positives, asking what percentage of the relevant documents have been found and 

how many false positives have also been returned. 

The advantage of having the two numbers for precision and recall is that one is 

more important than the other in many circumstances. Typical web surfers would 

like every result on the first page to be relevant (high precision) but have not the 

slightest interest in knowing let alone looking at every document that is relevant. In 

contrast, various professional searchers such as paralegals and intelligence analysts 

are very concerned with trying to get as high recall as possible, and will tolerate 

fairly low precision results in order to get it. Individuals searching their hard disks 

are also often interested in high recall searches. Nevertheless, the two quantities 

clearly trade off against one another: you can always get a recall of 1 (but very low 

precision) by retrieving all documents for all queries! Recall is a non-decreasing 

function of the number of documents retrieved. On the other hand, in a good 

system, precision usually decreases as the number of documents retrieved is 

increased. In general we want to get some amount of recall while tolerating only a 

certain percentage of false positives. 

A single measure that trades off precision versus recall is the F measure , which is 

the weighted harmonic mean of precision and recall: 

 

(40) 

 

 

where  and thus . The default balanced F measure equally 

weights precision and recall, which means making  or . It is 

commonly written as , which is short for , even though the formulation in 

terms of  more transparently exhibits the F measure as a weighted harmonic 

mean. When using , the formula on the right simplifies to: 

 

(41) 



 

However, using an even weighting is not the only choice. Values of 

 emphasize precision, while values of  emphasize recall. For example, a 

value of  or  might be used if recall is to be emphasized. Recall, 

precision, and the F measure are inherently measures between 0 and 1, but they are 

also very commonly written as percentages, on a scale between 0 and 100. 

 Graph 

comparing the harmonic mean to other means.The graph shows a slice through the 

calculation of various means of precision and recall for the fixed recall value of 

70%. The harmonic mean is always less than either the arithmetic or geometric 

mean, and often quite close to the minimum of the two numbers. When the 

precision is also 70%, all the measures coincide. 

Why do we use a harmonic mean rather than the simpler average (arithmetic 

mean)? Recall that we can always get 100% recall by just returning all documents, 

and therefore we can always get a 50% arithmetic mean by the same process. This 

strongly suggests that the arithmetic mean is an unsuitable measure to use. In 

contrast, if we assume that 1 document in 10,000 is relevant to the query, the 

harmonic mean score of this strategy is 0.02%. The harmonic mean is always less 

than or equal to the arithmetic mean and the geometric mean. When the values of 

two numbers differ greatly, the harmonic mean is closer to their minimum than to 

their arithmetic mean; see Figure 8.1 . 

 

Evaluation of ranked retrieval results 
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Figure 8.2: Precision/recall graph. 

Precision, recall, and the F measure are set-based measures. They are computed 

using unordered sets of documents. We need to extend these measures (or to define 

new measures) if we are to evaluate the ranked retrieval results that are now 

standard with search engines. In a ranked retrieval context, appropriate sets of 

retrieved documents are naturally given by the top  retrieved documents. For 

each such set, precision and recall values can be plotted to give a precision-recall 

curve , such as the one shown in Figure 8.2 . Precision-recall curves have a 

distinctive saw-tooth shape: if the  document retrieved is nonrelevant then 

recall is the same as for the top  documents, but precision has dropped. If it is 

relevant, then both precision and recall increase, and the curve jags up and to the 

right. It is often useful to remove these jiggles and the standard way to do this is 

with an interpolated precision: the interpolated precision  at a certain recall 

level  is defined as the highest precision found for any recall level : 

 

(42) 

 

 

The justification is that almost anyone would be prepared to look at a few more 

documents if it would increase the percentage of the viewed set that were relevant 

(that is, if the precision of the larger set is higher). Interpolated precision is shown 
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by a thinner line in Figure 8.2 . With this definition, the interpolated precision at a 

recall of 0 is well-defined (Exercise 8.4 ). 

 

Recall Interp. 

  Precision 

0.0 1.00 

0.1 0.67 

0.2 0.63 

0.3 0.55 

0.4 0.45 

0.5 0.41 

0.6 0.36 

0.7 0.29 

0.8 0.13 

0.9 0.10 

1.0 0.08 

Calculation of 11-point Interpolated Average Precision.This is for the precision-

recall curve shown in Figure 8.2 . 

 
 

Examining the entire precision-recall curve is very informative, but there is often a 

desire to boil this information down to a few numbers, or perhaps even a single 

number. The traditional way of doing this (used for instance in the first 8 TREC 

Ad Hoc evaluations) is the 11-point interpolated average precision . For each 

information need, the interpolated precision is measured at the 11 recall levels of 

0.0, 0.1, 0.2, ..., 1.0. For the precision-recall curve in Figure 8.2 , these 11 values 

are shown in Table 8.1 . For each recall level, we then calculate the arithmetic 

mean of the interpolated precision at that recall level for each information need in 

the test collection. A composite precision-recall curve showing 11 points can then 

be graphed. Figure 8.3 shows an example graph of such results from a 

representative good system at TREC 8. 
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 Averaged 11-point precision/recall graph 

across 50 queries for a representative TREC system.The Mean Average Precision 

for this system is 0.2553. 

In recent years, other measures have become more common. Most standard among 

the TREC community is Mean Average Precision (MAP), which provides a single-

figure measure of quality across recall levels. Among evaluation measures, MAP 

has been shown to have especially good discrimination and stability. For a single 

information need, Average Precision is the average of the precision value obtained 

for the set of top  documents existing after each relevant document is retrieved, 

and this value is then averaged over information needs. That is, if the set of 

relevant documents for an information need  is  and  is the 

set of ranked retrieval results from the top result until you get to document , then 

 

(43) 

 

 

When a relevant document is not retrieved at all, the precision value in the above 

equation is taken to be 0. For a single information need, the average precision 

approximates the area under the uninterpolated precision-recall curve, and so the 
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MAP is roughly the average area under the precision-recall curve for a set of 

queries. 

Using MAP, fixed recall levels are not chosen, and there is no interpolation. The 

MAP value for a test collection is the arithmetic mean of average precision values 

for individual information needs. (This has the effect of weighting each 

information need equally in the final reported number, even if many documents are 

relevant to some queries whereas very few are relevant to other queries.) 

Calculated MAP scores normally vary widely across information needs when 

measured within a single system, for instance, between 0.1 and 0.7. Indeed, there is 

normally more agreement in MAP for an individual information need across 

systems than for MAP scores for different information needs for the same system. 

This means that a set of test information needs must be large and diverse enough to 

be representative of system effectiveness across different queries. 

The above measures factor in precision at all recall levels. For many prominent 

applications, particularly web search, this may not be germane to users. What 

matters is rather how many good results there are on the first page or the first three 

pages. This leads to measuring precision at fixed low levels of retrieved results, 

such as 10 or 30 documents. This is referred to as ``Precision at '', for example 

``Precision at 10''. It has the advantage of not requiring any estimate of the size of 

the set of relevant documents but the disadvantages that it is the least stable of the 

commonly used evaluation measures and that it does not average well, since the 

total number of relevant documents for a query has a strong influence on precision 

at . 

An alternative, which alleviates this problem, is R-precision . It requires having a 

set of known relevant documents , from which we calculate the precision of 

the top  documents returned. (The set  may be incomplete, such as 

when  is formed by creating relevance judgments for the pooled top  results 

of particular systems in a set of experiments.) R-precision adjusts for the size of the 

set of relevant documents: A perfect system could score 1 on this metric for each 

query, whereas, even a perfect system could only achieve a precision at 20 of 0.4 if 

there were only 8 documents in the collection relevant to an information need. 

Averaging this measure across queries thus makes more sense. This measure is 

harder to explain to naive users than Precision at  but easier to explain than 

MAP. If there are  relevant documents for a query, we examine the top 

 results of a system, and find that  are relevant, then by definition, not only is the 



precision (and hence R-precision) , but the recall of this result set is 

also . Thus, R-precision turns out to be identical to the break-even point , 

another measure which is sometimes used, defined in terms of this equality 

relationship holding. Like Precision at , R-precision describes only one point on 

the precision-recall curve, rather than attempting to summarize effectiveness across 

the curve, and it is somewhat unclear why you should be interested in the break-

even point rather than either the best point on the curve (the point with maximal F-

measure) or a retrieval level of interest to a particular application (Precision at ). 

Nevertheless, R-precision turns out to be highly correlated with MAP empirically, 

despite measuring only a single point on the curve. 

 . 

Figure 8.4: The ROC curve corresponding to the precision-recall curve in Figure 8.2 . 

Another concept sometimes used in evaluation is an ROC curve . (``ROC'' stands 

for ``Receiver Operating Characteristics'', but knowing that doesn't help most 
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people.) An ROC curve plots the true positive rate or sensitivity against the false 

positive rate or ( ). Here, sensitivity is just another term for recall. 

The false positive rate is given by . Figure 8.4 shows the ROC curve 

corresponding to the precision-recall curve in Figure 8.2 . An ROC curve always 

goes from the bottom left to the top right of the graph. For a good system, the 

graph climbs steeply on the left side. For unranked result sets, specificity , given 

by , was not seen as a very useful notion. Because the set of true 

negatives is always so large, its value would be almost 1 for all information needs 

(and, correspondingly, the value of the false positive rate would be almost 0). That 

is, the ``interesting'' part of Figure 8.2 is , a part which is 

compressed to a small corner of Figure 8.4 . But an ROC curve could make sense 

when looking over the full retrieval spectrum, and it provides another way of 

looking at the data. In many fields, a common aggregate measure is to report the 

area under the ROC curve, which is the ROC analog of MAP. Precision-recall 

curves are sometimes loosely referred to as ROC curves. This is understandable, 

but not accurate. 

A final approach that has seen increasing adoption, especially when employed with 

machine learning approaches to ranking svm-ranking is measures of cumulative 

gain , and in particular normalized discounted cumulative gain ( NDCG ). NDCG 

is designed for situations of non-binary notions of relevance (cf. Section 8.5.1 ). 

Like precision at , it is evaluated over some number  of top search results. For a 

set of queries , let  be the relevance score assessors gave to document 

 for query . Then, 

 

(44) 

 

 

where  is a normalization factor calculated to make it so that a perfect ranking's 

NDCG at  for query  is 1. For queries for which  documents are 

retrieved, the last summation is done up to . 

Assessing relevance 
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To properly evaluate a system, your test information needs must be germane to the 

documents in the test document collection, and appropriate for predicted usage of 

the system. These information needs are best designed by domain experts. Using 

random combinations of query terms as an information need is generally not a 

good idea because typically they will not resemble the actual distribution of 

information needs. 

Given information needs and documents, you need to collect relevance 

assessments. This is a time-consuming and expensive process involving human 

beings. For tiny collections like Cranfield, exhaustive judgments of relevance for 

each query and document pair were obtained. For large modern collections, it is 

usual for relevance to be assessed only for a subset of the documents for each 

query. The most standard approach is pooling , where relevance is assessed over a 

subset of the collection that is formed from the top  documents returned by a 

number of different IR systems (usually the ones to be evaluated), and perhaps 

other sources such as the results of Boolean keyword searches or documents found 

by expert searchers in an interactive process. 

 

Table 8.2: Calculating the kappa statistic. 

    Judge 2 Relevance   

  Yes   No Total 

Judge 1 Yes 300   20 320 

Relevance No 10   70 80 

  Total 310   90 400 

 

 

Observed proportion of the times the judges 

agreed  

Pooled marginals  

 
Probability that the two judges agreed by 

chance  

Kappa statistic  

 
 



A human is not a device that reliably reports a gold standard judgment of relevance 

of a document to a query. Rather, humans and their relevance judgments are quite 

idiosyncratic and variable. But this is not a problem to be solved: in the final 

analysis, the success of an IR system depends on how good it is at satisfying the 

needs of these idiosyncratic humans, one information need at a time. 

Nevertheless, it is interesting to consider and measure how much agreement 

between judges there is on relevance judgments. In the social sciences, a common 

measure for agreement between judges is the kappa statistic . It is designed for 

categorical judgments and corrects a simple agreement rate for the rate of chance 

agreement. 

 

(46) 

 

 

where  is the proportion of the times the judges agreed, and  is the 

proportion of the times they would be expected to agree by chance. There are 

choices in how the latter is estimated: if we simply say we are making a two-class 

decision and assume nothing more, then the expected chance agreement rate is 0.5. 

However, normally the class distribution assigned is skewed, and it is usual to 

use marginal statistics to calculate expected agreement. There are still two ways 

to do it depending on whether one pools the marginal distribution across judges or 

uses the marginals for each judge separately; both forms have been used, but we 

present the pooled version because it is more conservative in the presence of 

systematic differences in assessments across judges. The calculations are shown in 

Table 8.2 . The kappa value will be 1 if two judges always agree, 0 if they agree 

only at the rate given by chance, and negative if they are worse than random. If 

there are more than two judges, it is normal to calculate an average pairwise kappa 

value. As a rule of thumb, a kappa value above 0.8 is taken as good agreement, a 

kappa value between 0.67 and 0.8 is taken as fair agreement, and agreement below 

0.67 is seen as data providing a dubious basis for an evaluation, though the precise 

cutoffs depend on the purposes for which the data will be used. 

Interjudge agreement of relevance has been measured within the TREC evaluations 

and for medical IR collections. Using the above rules of thumb, the level of 

agreement normally falls in the range of ``fair'' (0.67-0.8). The fact that human 

agreement on a binary relevance judgment is quite modest is one reason for not 

requiring more fine-grained relevance labeling from the test set creator. To answer 

the question of whether IR evaluation results are valid despite the variation of 

individual assessors' judgments, people have experimented with evaluations taking 

one or the other of two judges' opinions as the gold standard. The choice can make 

a considerable absolute difference to reported scores, but has in general been found 
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to have little impact on the relative effectiveness ranking of either different 

systems or variants of a single system which are being compared for effectiveness. 

 

Relevance feedback and query expansion 

In most collections, the same concept may be referred to using different words. 

This issue, known as synonymy , has an impact on the recall of most information 

retrieval systems. For example, you would want a search for aircraft to match plane 

(but only for references to an airplane, not a woodworking plane), and for a search 

on thermodynamics to match references to heat in appropriate discussions. Users 

often attempt to address this problem themselves by manually refining a query, as 

was discussed in Section 1.4 ; in this chapter we discuss ways in which a system 

can help with query refinement, either fully automatically or with the user in the 

loop. 

The methods for tackling this problem split into two major classes: global methods 

and local methods. Global methods are techniques for expanding or reformulating 

query terms independent of the query and results returned from it, so that changes 

in the query wording will cause the new query to match other semantically similar 

terms. Global methods include: 

 Query expansion/reformulation with a thesaurus or WordNet 

(Section 9.2.2 ) 

 Query expansion via automatic thesaurus generation (Section 9.2.3 ) 

 Techniques like spelling correction (discussed in Chapter 3 ) 

Local methods adjust a query relative to the documents that initially appear to 

match the query. The basic methods here are: 

 Relevance feedback (Section 9.1 ) 

 Pseudo relevance feedback, also known as Blind relevance feedback 

(Section 9.1.6 ) 

 (Global) indirect relevance feedback (Section 9.1.7 ) 

 

The Rocchio algorithm for relevance feedback 

The Rocchio Algorithm is the classic algorithm for implementing relevance 

feedback. It models a way of incorporating relevance feedback information into the 

vector space model of Section 6.3 . 
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Figure 9.3: The Rocchio optimal query for separating relevant and nonrelevant documents. 

 


