
UNIT4

Computing Scores in a Complete Search System

Computing Scores in a Complete Search System- Efficient scoring and ranking, Inexact

retrieval, Champion lists, Impact ordering, Cluster pruning, Tiered indexes, Query term

proximity, Evaluation in Information Retrieval: Standard test collections, unranked retrieval

sets, Ranked retrieval results, Assessing relevance, Relevance feedback.

Computing Scores in a Complete Search System

Efficient scoring and ranking

We begin by recapping the algorithm of Figure 6.14 . For a query such as

 jealous gossip, two observations are immediate:

1. The unit vector has only two non-zero components.

2. In the absence of any weighting for query terms, these non-zero components

are equal - in this case, both equal 0.707.

For the purpose of ranking the documents matching this query, we are really

interested in the relative (rather than absolute) scores of the documents in the

collection. To this end, it suffices to compute the cosine similarity from each

document unit vector to (in which all non-zero components of the query

vector are set to 1), rather than to the unit vector . For any two

documents

(34)

For any document , the cosine similarity is the weighted sum, over

all terms in the query , of the weights of those terms in . This in turn can be

computed by a postings intersection exactly as in the algorithm of Figure 6.14 ,

with line 8 altered since we take to be 1 so that the multiply-add in that step

becomes just an addition; the result is shown in Figure 7.1 . We walk through the

postings in the inverted index for the terms in , accumulating the total score for

https://nlp.stanford.edu/IR-book/html/htmledition/computing-vector-scores-1.html#fig:cosinealg
https://nlp.stanford.edu/IR-book/html/htmledition/computing-vector-scores-1.html#fig:cosinealg
https://nlp.stanford.edu/IR-book/html/htmledition/efficient-scoring-and-ranking-1.html#fig:fastcosinealg

each document - very much as in processing a Boolean query, except we assign a

positive score to each document that appears in any of the postings being traversed.

As mentioned in Section 6.3.3 we maintain an idf value for each dictionary term

and a tf value for each postings entry. This scheme computes a score for every

document in the postings of any of the query terms; the total number of such

documents may be considerably smaller than .

Figure 7.1: A faster algorithm for vector space scores.

Given these scores, the final step before presenting results to a user is to pick out

the highest-scoring documents. While one could sort the complete set of scores,

a better approach is to use a heap to retrieve only the top documents in order.

Where is the number of documents with non-zero cosine scores, constructing

such a heap can be performed in comparison steps, following which each of

the highest scoring documents can be ``read off'' the heap with

 comparison steps.

https://nlp.stanford.edu/IR-book/html/htmledition/computing-vector-scores-1.html#sec:pseudocode

Inexact top K document retrieval

Thus far, we have focused on retrieving precisely the highest-scoring documents

for a query. We now consider schemes by which we produce documents that

are likely to be among the highest scoring documents for a query. In doing so,

we hope to dramatically lower the cost of computing the documents we output,

without materially altering the user's perceived relevance of the top results.

Consequently, in most applications it suffices to retrieve documents whose

scores are very close to those of the best. In the sections that follow we detail

schemes that retrieve such documents while potentially avoiding computing

scores for most of the documents in the collection.

Such inexact top- retrieval is not necessarily, from the user's perspective, a bad

thing. The top documents by the cosine measure are in any case not necessarily

the best for the query: cosine similarity is only a proxy for the user's perceived

relevance. In Sections 7.1.2 -7.1.6 below, we give heuristics using which we are

likely to retrieve documents with cosine scores close to those of the top

 documents. The principal cost in computing the output stems from computing

cosine similarities between the query and a large number of documents. Having a

large number of documents in contention also increases the selection cost in the

final stage of culling the top documents from a heap. We now consider a series

of ideas designed to eliminate a large number of documents without computing

their cosine scores. The heuristics have the following two-step scheme:

1. Find a set of documents that are contenders, where .

 does not necessarily contain the top-scoring documents for the query,

but is likely to have many documents with scores near those of the top .

2. Return the top-scoring documents in .

From the descriptions of these ideas it will be clear that many of them require
parameters to be tuned to the collection and application at hand; pointers to
experience in setting these parameters may be found at the end of this chapter. It

https://nlp.stanford.edu/IR-book/html/htmledition/index-elimination-1.html#sec:indelim
https://nlp.stanford.edu/IR-book/html/htmledition/cluster-pruning-1.html#sec:clusterpruning

should also be noted that most of these heuristics are well-suited to free text
queries, but not for Boolean or phrase queries.

Champion lists
The idea of champion lists (sometimes also called fancy lists or top docs) is to

precompute, for each term in the dictionary, the set of the documents with

the highest weights for ; the value of is chosen in advance. For tf-idf

weighting, these would be the documents with the highest tf values for term .

We call this set of documents the champion list for term .

Now, given a query we create a set as follows: we take the union of the

champion lists for each of the terms comprising . We now restrict cosine

computation to only the documents in . A critical parameter in this scheme is the

value , which is highly application dependent. Intuitively, should be large

compared with , especially if we use any form of the index elimination described

in Section 7.1.2 . One issue here is that the value is set at the time of index

construction, whereas is application dependent and may not be available until

the query is received; as a result we may (as in the case of index elimination) find

ourselves with a set that has fewer than documents. There is no reason to

have the same value of for all terms in the dictionary; it could for instance be set

to be higher for rarer terms.

https://nlp.stanford.edu/IR-book/html/htmledition/index-elimination-1.html#sec:indelim

Impact ordering

In all the postings lists described thus far, we order the documents consistently by
some common ordering: typically by document ID but in Section 7.1.4 by static
quality scores. As noted at the end of Section 6.3.3 , such a common ordering
supports the concurrent traversal of all of the query terms' postings lists,
computing the score for each document as we encounter it. Computing scores in
this manner is sometimes referred to as document-at-a-time scoring. We will now

introduce a technique for inexact top- retrieval in which the postings are not all
ordered by a common ordering, thereby precluding such a concurrent traversal.
We will therefore require scores to be ``accumulated'' one term at a time as in
the scheme of Figure 6.14 , so that we have term-at-a-time scoring.

Static quality scores and ordering

We now further develop the idea of champion lists, in the somewhat more

general setting of static quality scores . In many search engines, we have available

a measure of quality for each document that is query-independent and

thus static. This quality measure may be viewed as a number between zero and

one. For instance, in the context of news stories on the web, may be derived

from the number of favorable reviews of the story by web surfers. otherindexing

provides further discussion on this topic, as does Chapter 21 in the context of web

search.

The net score for a document is some combination of together with the

query-dependent score induced (say) by (27). The precise combination may be

determined by the learning methods of Section 6.1.2 , to be developed further in

Section 15.4.1 ; but for the purposes of our exposition here, let us consider a

simple sum:

(35)

https://nlp.stanford.edu/IR-book/html/htmledition/static-quality-scores-and-ordering-1.html#sec:static
https://nlp.stanford.edu/IR-book/html/htmledition/computing-vector-scores-1.html#sec:pseudocode
https://nlp.stanford.edu/IR-book/html/htmledition/computing-vector-scores-1.html#fig:cosinealg
https://nlp.stanford.edu/IR-book/html/htmledition/link-analysis-1.html#ch:link
https://nlp.stanford.edu/IR-book/html/htmledition/queries-as-vectors-1.html#eqn:cosinescore
https://nlp.stanford.edu/IR-book/html/htmledition/learning-weights-1.html#sec:mlr
https://nlp.stanford.edu/IR-book/html/htmledition/a-simple-example-of-machine-learned-scoring-1.html#sec:mls

In this simple form, the static quality and the query-dependent score from

(24) have equal contributions, assuming each is between 0 and 1. Other relative

weightings are possible; the effectiveness of our heuristics will depend on the

specific relative weighting.

First, consider ordering the documents in the postings list for each term by

decreasing value of . This allows us to perform the postings intersection

algorithm of Figure 1.6 . In order to perform the intersection by a single pass

through the postings of each query term, the algorithm of Figure 1.6 relied on the

postings being ordered by document IDs. But in fact, we only required that all

postings be ordered by a single common ordering; here we rely on the values

to provide this common ordering. This is illustrated in Figure 7.2 , where the

postings are ordered in decreasing order of .

 A static quality-ordered index.In this example we assume that Doc1, Doc2 and

Doc3 respectively have static quality scores .

The first idea is a direct extension of champion lists: for a well-chosen value , we

maintain for each term a global champion list of the documents with the

highest values for . The list itself is, like all the postings lists

considered so far, sorted by a common order (either by document IDs or by static

quality). Then at query time, we only compute the net scores (35) for documents in

the union of these global champion lists. Intuitively, this has the effect of focusing

on documents likely to have large net scores.

https://nlp.stanford.edu/IR-book/html/htmledition/dot-products-1.html#eqn:cosine
https://nlp.stanford.edu/IR-book/html/htmledition/processing-boolean-queries-1.html#fig:postings-merge-algorithm
https://nlp.stanford.edu/IR-book/html/htmledition/processing-boolean-queries-1.html#fig:postings-merge-algorithm
https://nlp.stanford.edu/IR-book/html/htmledition/static-quality-scores-and-ordering-1.html#fig:gd
https://nlp.stanford.edu/IR-book/html/htmledition/static-quality-scores-and-ordering-1.html#eqn:netscore

We conclude the discussion of global champion lists with one further idea. We

maintain for each term two postings lists consisting of disjoint sets of

documents, each sorted by values. The first list, which we call high, contains

the documents with the highest tf values for . The second list, which we

call low, contains all other documents containing . When processing a query, we

first scan only the high lists of the query terms, computing net scores for any

document on the high lists of all (or more than a certain number of) query terms. If

we obtain scores for documents in the process, we terminate. If not, we continue

the scanning into the low lists, scoring documents in these postings lists. This idea

is developed further in Section 7.2.1 .

Cluster pruning
In cluster pruning we have a preprocessing step during which we cluster the

document vectors. Then at query time, we consider only documents in a small

number of clusters as candidates for which we compute cosine scores.

Specifically, the preprocessing step is as follows:

1. Pick documents at random from the collection. Call these leaders.
2. For each document that is not a leader, we compute its nearest leader.

We refer to documents that are not leaders as followers. Intuitively, in the

partition of the followers induced by the use of randomly chosen leaders,

the expected number of followers for each leader is . Next, query

processing proceeds as follows:

1. Given a query , find the leader that is closest to . This entails

computing cosine similarities from to each of the leaders.

https://nlp.stanford.edu/IR-book/html/htmledition/tiered-indexes-1.html#sec:tiered

2. The candidate set consists of together with its followers. We
compute the cosine scores for all documents in this candidate set.

The use of randomly chosen leaders for clustering is fast and likely to reflect the

distribution of the document vectors in the vector space: a region of the vector

space that is dense in documents is likely to produce multiple leaders and thus a

finer partition into sub-regions. This illustrated in Figure 7.3 .

Figure 7.3: Cluster pruning.

Variations of cluster pruning introduce additional parameters and , both of

which are positive integers. In the pre-processing step we attach each follower to

its closest leaders, rather than a single closest leader. At query time we consider

the leaders closest to the query . Clearly, the basic scheme above corresponds

to the case . Further, increasing or increases the likelihood of

finding documents that are more likely to be in the set of true top-scoring

 documents, at the expense of more computation. We reiterate this approach when

describing clustering in Chapter 16 (page 16.1).

https://nlp.stanford.edu/IR-book/html/htmledition/cluster-pruning-1.html#fig:figclusterpruning
https://nlp.stanford.edu/IR-book/html/htmledition/flat-clustering-1.html#ch:flatclust
https://nlp.stanford.edu/IR-book/html/htmledition/clustering-in-information-retrieval-1.html#p:cluster4fastsearch

Tiered indexes
We mentioned in Section 7.1.2 that when using heuristics such as index

elimination for inexact top- retrieval, we may occasionally find ourselves with a

set of contenders that has fewer than documents. A common solution to

this issue is the user of tiered indexes , which may be viewed as a generalization

of champion lists . We illustrate this idea in Figure 7.4 , where we represent the

documents and terms of Figure 6.9 . In this example we set a tf threshold of 20 for

tier 1 and 10 for tier 2, meaning that the tier 1 index only has postings entries

with tf values exceeding 20, while the tier 2 index only has postings entries with tf

values exceeding 10. In this example we have chosen to order the postings entries

within a tier by document ID.

 Tiered indexes.If we fail to

get results from tier 1, query processing ``falls back'' to tier 2, and so on.

Within each tier, postings are ordered by document ID.

https://nlp.stanford.edu/IR-book/html/htmledition/index-elimination-1.html#sec:indelim
https://nlp.stanford.edu/IR-book/html/htmledition/tiered-indexes-1.html#fig:fig:tiered
https://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html#fig:tfgraph

Query-term proximity

Especially for free text queries on the web (Chapter 19), users prefer a document

in which most or all of the query terms appear close to each other, because this is

evidence that the document has text focused on their query intent. Consider a query

with two or more query terms, . Let be the width of the smallest

window in a document that contains all the query terms, measured in the number

of words in the window. For instance, if the document were to simply consist of

the sentence The quality of mercy is not strained, the smallest window for the

query strained mercy would be 4. Intuitively, the smaller that is, the better

that matches the query. In cases where the document does not contain all of the

query terms, we can set to be some enormous number. We could also consider

variants in which only words that are not stop words are considered in

computing . Such proximity-weighted scoring functions are a departure from

pure cosine similarity and closer to the ``soft conjunctive'' semantics that Google

and other web search engines evidently use.

How can we design such a proximity-weighted scoring function to depend on ?

The simplest answer relies on a ``hand coding'' technique we introduce below in

Section 7.2.3 . A more scalable approach goes back to Section 6.1.2 - we treat the

integer as yet another feature in the scoring function, whose importance is

assigned by machine learning, as will be developed further in Section 15.4.1 .

We now consider a simple case of weighted zone scoring, where each document

has a title zone and a body zone. Given a query and a document , we use the

given Boolean match function to compute Boolean variables and ,

depending on whether the title (respectively, body) zone of matches query .

For instance, the algorithm in Figure 6.4 uses an AND of the query terms for this

Boolean function. We will compute a score between 0 and 1 for each (document,

query) pair using and by using a constant , as follows:

(14)

https://nlp.stanford.edu/IR-book/html/htmledition/web-search-basics-1.html#ch:webchar
https://nlp.stanford.edu/IR-book/html/htmledition/designing-parsing-and-scoring-functions-1.html#sec:queryparsing
https://nlp.stanford.edu/IR-book/html/htmledition/learning-weights-1.html#sec:mlr
https://nlp.stanford.edu/IR-book/html/htmledition/a-simple-example-of-machine-learned-scoring-1.html#sec:mls
https://nlp.stanford.edu/IR-book/html/htmledition/weighted-zone-scoring-1.html#fig:weighted-merge-algorithm

We now describe how to determine the constant from a set of training examples,

each of which is a triple of the form . In each training

example, a given training document and a given training query are assessed

by a human editor who delivers a relevance judgment that is

either Relevant or Non-relevant. This is illustrated in Figure 6.5 , where seven

training examples are shown.

Figure 6.5: An illustration of training examples.

For each training example we have Boolean values and that

we use to compute a score from (14)

(15)

We now compare this computed score to the human relevance judgment for the

same document-query pair ; to this end, we will quantize

each Relevant judgment as a 1 and each Non-relevant judgment as a 0. Suppose

that we define the error of the scoring function with weight as

(16)

where we have quantized the editorial relevance judgment to 0 or 1. Then,

the total error of a set of training examples is given by

(17)

https://nlp.stanford.edu/IR-book/html/htmledition/learning-weights-1.html#fig:weightexamples
https://nlp.stanford.edu/IR-book/html/htmledition/learning-weights-1.html#eqn:1varmlr

The problem of learning the constant from the given training examples then

reduces to picking the value of that minimizes the total error in (17).

Picking the best value of in (17) in the formulation of Section 6.1.3 reduces to

the problem of minimizing a quadratic function of over the interval . This

reduction is detailed in Section 6.1.3

https://nlp.stanford.edu/IR-book/html/htmledition/learning-weights-1.html#eqn:mlroerror
https://nlp.stanford.edu/IR-book/html/htmledition/learning-weights-1.html#eqn:mlroerror
https://nlp.stanford.edu/IR-book/html/htmledition/the-optimal-weight-g-1.html#sec:1varmlr
https://nlp.stanford.edu/IR-book/html/htmledition/the-optimal-weight-g-1.html#sec:1varmlr

Information retrieval system evaluation

To measure ad hoc information retrieval effectiveness in the standard way, we

need a test collection consisting of three things:

1. A document collection

2. A test suite of information needs, expressible as queries

3. A set of relevance judgments, standardly a binary assessment of

either relevant or nonrelevant for each query-document pair.

The standard approach to information retrieval system evaluation revolves around

the notion of relevant and nonrelevant documents. With respect to a user

information need, a document in the test collection is given a binary classification

as either relevant or nonrelevant. This decision is referred to as the gold

standard or ground truth judgment of relevance. The test document collection and

suite of information needs have to be of a reasonable size: you need to average

performance over fairly large test sets, as results are highly variable over different

documents and information needs. As a rule of thumb, 50 information needs has

usually been found to be a sufficient minimum.

Relevance is assessed relative to an , not a query. For example, an information

need might be:

Information on whether drinking red wine is more effective at reducing your risk

of heart attacks than white wine.

This might be translated into a query such as:

wine and red and white and heart and attack and effective

A document is relevant if it addresses the stated information need, not because it

just happens to contain all the words in the query. This distinction is often

misunderstood in practice, because the information need is not overt. But,

nevertheless, an information need is present. If a user types python into a web

search engine, they might be wanting to know where they can purchase a pet

python. Or they might be wanting information on the programming language

Python. From a one word query, it is very difficult for a system to know what the

information need is. But, nevertheless, the user has one, and can judge the returned

results on the basis of their relevance to it. To evaluate a system, we require an

overt expression of an information need, which can be used for judging returned

documents as relevant or nonrelevant. At this point, we make a simplification:

relevance can reasonably be thought of as a scale, with some documents highly

relevant and others marginally so. But for the moment, we will use just a binary

decision of relevance. We discuss the reasons for using binary relevance judgments

and alternatives in Section 8.5.1 .

https://nlp.stanford.edu/IR-book/html/htmledition/critiques-and-justifications-of-the-concept-of-relevance-1.html#sec:relevance

Many systems contain various weights (often known as parameters) that can be

adjusted to tune system performance. It is wrong to report results on a test

collection which were obtained by tuning these parameters to maximize

performance on that collection. That is because such tuning overstates the expected

performance of the system, because the weights will be set to maximize

performance on one particular set of queries rather than for a random sample of

queries. In such cases, the correct procedure is to have one or more development

test collections , and to tune the parameters on the development test collection. The

tester then runs the system with those weights on the test collection and reports the

results on that collection as an unbiased estimate of performance.

Standard test collections

Here is a list of the most standard test collections and evaluation series. We focus

particularly on test collections for ad hoc information retrieval system evaluation,

but also mention a couple of similar test collections for text classification.

The Cranfield collection. This was the pioneering test collection in allowing

precise quantitative measures of information retrieval effectiveness, but is

nowadays too small for anything but the most elementary pilot experiments.

Collected in the United Kingdom starting in the late 1950s, it contains 1398

abstracts of aerodynamics journal articles, a set of 225 queries, and exhaustive

relevance judgments of all (query, document) pairs.

Text Retrieval Conference (TREC) . The U.S. National Institute of Standards and

Technology (NIST) has run a large IR test bed evaluation series since 1992. Within

this framework, there have been many tracks over a range of different test

collections, but the best known test collections are the ones used for the TREC Ad

Hoc track during the first 8 TREC evaluations between 1992 and 1999. In total,

these test collections comprise 6 CDs containing 1.89 million documents (mainly,

but not exclusively, newswire articles) and relevance judgments for 450

information needs, which are called topics and specified in detailed text passages.

Individual test collections are defined over different subsets of this data. The early

TRECs each consisted of 50 information needs, evaluated over different but

overlapping sets of documents. TRECs 6-8 provide 150 information needs over

about 528,000 newswire and Foreign Broadcast Information Service articles. This

is probably the best subcollection to use in future work, because it is the largest

and the topics are more consistent. Because the test document collections are so

large, there are no exhaustive relevance judgments. Rather, NIST assessors'

relevance judgments are available only for the documents that were among the

top returned for some system which was entered in the TREC evaluation for

which the information need was developed.

In more recent years, NIST has done evaluations on larger document collections,

including the 25 million page GOV2 web page collection. From the beginning, the

NIST test document collections were orders of magnitude larger than anything

available to researchers previously and GOV2 is now the largest Web collection

easily available for research purposes. Nevertheless, the size of GOV2 is still more

than 2 orders of magnitude smaller than the current size of the document

collections indexed by the large web search companies.

NII Test Collections for IR Systems (NTCIR). The NTCIR project has built

various test collections of similar sizes to the TREC collections, focusing on East

Asian language and cross-language information retrieval , where queries are made

in one language over a document collection containing documents in one or more

other languages. See: http://research.nii.ac.jp/ntcir/data/data-en.html

Cross Language Evaluation Forum (CLEF). This evaluation series has

concentrated on European languages and cross-language information retrieval.

See: http://www.clef-campaign.org/

and Reuters-RCV1. For text classification, the most used test collection has been

the Reuters-21578 collection of 21578 newswire articles; see Chapter 13 ,

page 13.6 . More recently, Reuters released the much larger Reuters Corpus

Volume 1 (RCV1), consisting of 806,791 documents; see Chapter 4 , page 4.2 . Its

scale and rich annotation makes it a better basis for future research.

20 Newsgroups . This is another widely used text classification collection,

collected by Ken Lang. It consists of 1000 articles from each of 20 Usenet

newsgroups (the newsgroup name being regarded as the category). After the

removal of duplicate articles, as it is usually used, it contains 18941 articles.

Evaluation of unranked retrieval sets

http://research.nii.ac.jp/ntcir/data/data-en.html
http://www.clef-campaign.org/
https://nlp.stanford.edu/IR-book/html/htmledition/text-classification-and-naive-bayes-1.html#ch:nbayes
https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-text-classification-1.html#p:reuters21578
https://nlp.stanford.edu/IR-book/html/htmledition/index-construction-1.html#ch:iconst
https://nlp.stanford.edu/IR-book/html/htmledition/blocked-sort-based-indexing-1.html#p:rcv1

Given these ingredients, how is system effectiveness measured? The two most

frequent and basic measures for information retrieval effectiveness are precision

and recall. These are first defined for the simple case where an IR system returns a

set of documents for a query. We will see later how to extend these notions to

ranked retrieval situations.

Precision () is the fraction of retrieved documents that are relevant

(36)

Recall () is the fraction of relevant documents that are retrieved

(37)

These notions can be made clear by examining the following contingency table:

Then:

(38)

(39)

An obvious alternative that may occur to the reader is to judge an information

retrieval system by its accuracy , that is, the fraction of its classifications that are

correct. In terms of the contingency table

above, . This seems plausible, since there

are two actual classes, relevant and nonrelevant, and an information retrieval

system can be thought of as a two-class classifier which attempts to label them as

such (it retrieves the subset of documents which it believes to be relevant). This is

precisely the effectiveness measure often used for evaluating machine learning

classification problems.

There is a good reason why accuracy is not an appropriate measure for information

retrieval problems. In almost all circumstances, the data is extremely skewed:

normally over 99.9% of the documents are in the nonrelevant category. A system

tuned to maximize accuracy can appear to perform well by simply deeming all

documents nonrelevant to all queries. Even if the system is quite good, trying to

label some documents as relevant will almost always lead to a high rate of false

positives. However, labeling all documents as nonrelevant is completely

unsatisfying to an information retrieval system user. Users are always going to

want to see some documents, and can be assumed to have a certain tolerance for

seeing some false positives providing that they get some useful information. The

measures of precision and recall concentrate the evaluation on the return of true

positives, asking what percentage of the relevant documents have been found and

how many false positives have also been returned.

The advantage of having the two numbers for precision and recall is that one is

more important than the other in many circumstances. Typical web surfers would

like every result on the first page to be relevant (high precision) but have not the

slightest interest in knowing let alone looking at every document that is relevant. In

contrast, various professional searchers such as paralegals and intelligence analysts

are very concerned with trying to get as high recall as possible, and will tolerate

fairly low precision results in order to get it. Individuals searching their hard disks

are also often interested in high recall searches. Nevertheless, the two quantities

clearly trade off against one another: you can always get a recall of 1 (but very low

precision) by retrieving all documents for all queries! Recall is a non-decreasing

function of the number of documents retrieved. On the other hand, in a good

system, precision usually decreases as the number of documents retrieved is

increased. In general we want to get some amount of recall while tolerating only a

certain percentage of false positives.

A single measure that trades off precision versus recall is the F measure , which is

the weighted harmonic mean of precision and recall:

(40)

where and thus . The default balanced F measure equally

weights precision and recall, which means making or . It is

commonly written as , which is short for , even though the formulation in

terms of more transparently exhibits the F measure as a weighted harmonic

mean. When using , the formula on the right simplifies to:

(41)

However, using an even weighting is not the only choice. Values of

 emphasize precision, while values of emphasize recall. For example, a

value of or might be used if recall is to be emphasized. Recall,

precision, and the F measure are inherently measures between 0 and 1, but they are

also very commonly written as percentages, on a scale between 0 and 100.

 Graph

comparing the harmonic mean to other means.The graph shows a slice through the

calculation of various means of precision and recall for the fixed recall value of

70%. The harmonic mean is always less than either the arithmetic or geometric

mean, and often quite close to the minimum of the two numbers. When the

precision is also 70%, all the measures coincide.

Why do we use a harmonic mean rather than the simpler average (arithmetic

mean)? Recall that we can always get 100% recall by just returning all documents,

and therefore we can always get a 50% arithmetic mean by the same process. This

strongly suggests that the arithmetic mean is an unsuitable measure to use. In

contrast, if we assume that 1 document in 10,000 is relevant to the query, the

harmonic mean score of this strategy is 0.02%. The harmonic mean is always less

than or equal to the arithmetic mean and the geometric mean. When the values of

two numbers differ greatly, the harmonic mean is closer to their minimum than to

their arithmetic mean; see Figure 8.1 .

Evaluation of ranked retrieval results

https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-unranked-retrieval-sets-1.html#fig:harmonic

Figure 8.2: Precision/recall graph.

Precision, recall, and the F measure are set-based measures. They are computed

using unordered sets of documents. We need to extend these measures (or to define

new measures) if we are to evaluate the ranked retrieval results that are now

standard with search engines. In a ranked retrieval context, appropriate sets of

retrieved documents are naturally given by the top retrieved documents. For

each such set, precision and recall values can be plotted to give a precision-recall

curve , such as the one shown in Figure 8.2 . Precision-recall curves have a

distinctive saw-tooth shape: if the document retrieved is nonrelevant then

recall is the same as for the top documents, but precision has dropped. If it is

relevant, then both precision and recall increase, and the curve jags up and to the

right. It is often useful to remove these jiggles and the standard way to do this is

with an interpolated precision: the interpolated precision at a certain recall

level is defined as the highest precision found for any recall level :

(42)

The justification is that almost anyone would be prepared to look at a few more

documents if it would increase the percentage of the viewed set that were relevant

(that is, if the precision of the larger set is higher). Interpolated precision is shown

https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html#fig:precision-recall

by a thinner line in Figure 8.2 . With this definition, the interpolated precision at a

recall of 0 is well-defined (Exercise 8.4).

Recall Interp.

 Precision

0.0 1.00

0.1 0.67

0.2 0.63

0.3 0.55

0.4 0.45

0.5 0.41

0.6 0.36

0.7 0.29

0.8 0.13

0.9 0.10

1.0 0.08

Calculation of 11-point Interpolated Average Precision.This is for the precision-

recall curve shown in Figure 8.2 .

Examining the entire precision-recall curve is very informative, but there is often a

desire to boil this information down to a few numbers, or perhaps even a single

number. The traditional way of doing this (used for instance in the first 8 TREC

Ad Hoc evaluations) is the 11-point interpolated average precision . For each

information need, the interpolated precision is measured at the 11 recall levels of

0.0, 0.1, 0.2, ..., 1.0. For the precision-recall curve in Figure 8.2 , these 11 values

are shown in Table 8.1 . For each recall level, we then calculate the arithmetic

mean of the interpolated precision at that recall level for each information need in

the test collection. A composite precision-recall curve showing 11 points can then

be graphed. Figure 8.3 shows an example graph of such results from a

representative good system at TREC 8.

https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html#fig:precision-recall
https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html#ex:interp-prec
https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html#fig:precision-recall
https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html#fig:precision-recall
https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html#tab:11-point
https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html#fig:trec-11-point

 Averaged 11-point precision/recall graph

across 50 queries for a representative TREC system.The Mean Average Precision

for this system is 0.2553.

In recent years, other measures have become more common. Most standard among

the TREC community is Mean Average Precision (MAP), which provides a single-

figure measure of quality across recall levels. Among evaluation measures, MAP

has been shown to have especially good discrimination and stability. For a single

information need, Average Precision is the average of the precision value obtained

for the set of top documents existing after each relevant document is retrieved,

and this value is then averaged over information needs. That is, if the set of

relevant documents for an information need is and is the

set of ranked retrieval results from the top result until you get to document , then

(43)

When a relevant document is not retrieved at all, the precision value in the above

equation is taken to be 0. For a single information need, the average precision

approximates the area under the uninterpolated precision-recall curve, and so the

https://nlp.stanford.edu/IR-book/html/htmledition/footnode.html

MAP is roughly the average area under the precision-recall curve for a set of

queries.

Using MAP, fixed recall levels are not chosen, and there is no interpolation. The

MAP value for a test collection is the arithmetic mean of average precision values

for individual information needs. (This has the effect of weighting each

information need equally in the final reported number, even if many documents are

relevant to some queries whereas very few are relevant to other queries.)

Calculated MAP scores normally vary widely across information needs when

measured within a single system, for instance, between 0.1 and 0.7. Indeed, there is

normally more agreement in MAP for an individual information need across

systems than for MAP scores for different information needs for the same system.

This means that a set of test information needs must be large and diverse enough to

be representative of system effectiveness across different queries.

The above measures factor in precision at all recall levels. For many prominent

applications, particularly web search, this may not be germane to users. What

matters is rather how many good results there are on the first page or the first three

pages. This leads to measuring precision at fixed low levels of retrieved results,

such as 10 or 30 documents. This is referred to as ``Precision at '', for example

``Precision at 10''. It has the advantage of not requiring any estimate of the size of

the set of relevant documents but the disadvantages that it is the least stable of the

commonly used evaluation measures and that it does not average well, since the

total number of relevant documents for a query has a strong influence on precision

at .

An alternative, which alleviates this problem, is R-precision . It requires having a

set of known relevant documents , from which we calculate the precision of

the top documents returned. (The set may be incomplete, such as

when is formed by creating relevance judgments for the pooled top results

of particular systems in a set of experiments.) R-precision adjusts for the size of the

set of relevant documents: A perfect system could score 1 on this metric for each

query, whereas, even a perfect system could only achieve a precision at 20 of 0.4 if

there were only 8 documents in the collection relevant to an information need.

Averaging this measure across queries thus makes more sense. This measure is

harder to explain to naive users than Precision at but easier to explain than

MAP. If there are relevant documents for a query, we examine the top

 results of a system, and find that are relevant, then by definition, not only is the

precision (and hence R-precision) , but the recall of this result set is

also . Thus, R-precision turns out to be identical to the break-even point ,

another measure which is sometimes used, defined in terms of this equality

relationship holding. Like Precision at , R-precision describes only one point on

the precision-recall curve, rather than attempting to summarize effectiveness across

the curve, and it is somewhat unclear why you should be interested in the break-

even point rather than either the best point on the curve (the point with maximal F-

measure) or a retrieval level of interest to a particular application (Precision at).

Nevertheless, R-precision turns out to be highly correlated with MAP empirically,

despite measuring only a single point on the curve.

 .

Figure 8.4: The ROC curve corresponding to the precision-recall curve in Figure 8.2 .

Another concept sometimes used in evaluation is an ROC curve . (``ROC'' stands

for ``Receiver Operating Characteristics'', but knowing that doesn't help most

https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html#fig:precision-recall

people.) An ROC curve plots the true positive rate or sensitivity against the false

positive rate or (). Here, sensitivity is just another term for recall.

The false positive rate is given by . Figure 8.4 shows the ROC curve

corresponding to the precision-recall curve in Figure 8.2 . An ROC curve always

goes from the bottom left to the top right of the graph. For a good system, the

graph climbs steeply on the left side. For unranked result sets, specificity , given

by , was not seen as a very useful notion. Because the set of true

negatives is always so large, its value would be almost 1 for all information needs

(and, correspondingly, the value of the false positive rate would be almost 0). That

is, the ``interesting'' part of Figure 8.2 is , a part which is

compressed to a small corner of Figure 8.4 . But an ROC curve could make sense

when looking over the full retrieval spectrum, and it provides another way of

looking at the data. In many fields, a common aggregate measure is to report the

area under the ROC curve, which is the ROC analog of MAP. Precision-recall

curves are sometimes loosely referred to as ROC curves. This is understandable,

but not accurate.

A final approach that has seen increasing adoption, especially when employed with

machine learning approaches to ranking svm-ranking is measures of cumulative

gain , and in particular normalized discounted cumulative gain (NDCG). NDCG

is designed for situations of non-binary notions of relevance (cf. Section 8.5.1).

Like precision at , it is evaluated over some number of top search results. For a

set of queries , let be the relevance score assessors gave to document

 for query . Then,

(44)

where is a normalization factor calculated to make it so that a perfect ranking's

NDCG at for query is 1. For queries for which documents are

retrieved, the last summation is done up to .

Assessing relevance

https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html#fig:ROC-curve
https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html#fig:precision-recall
https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html#fig:precision-recall
https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html#fig:ROC-curve
https://nlp.stanford.edu/IR-book/html/htmledition/critiques-and-justifications-of-the-concept-of-relevance-1.html#sec:relevance

To properly evaluate a system, your test information needs must be germane to the

documents in the test document collection, and appropriate for predicted usage of

the system. These information needs are best designed by domain experts. Using

random combinations of query terms as an information need is generally not a

good idea because typically they will not resemble the actual distribution of

information needs.

Given information needs and documents, you need to collect relevance

assessments. This is a time-consuming and expensive process involving human

beings. For tiny collections like Cranfield, exhaustive judgments of relevance for

each query and document pair were obtained. For large modern collections, it is

usual for relevance to be assessed only for a subset of the documents for each

query. The most standard approach is pooling , where relevance is assessed over a

subset of the collection that is formed from the top documents returned by a

number of different IR systems (usually the ones to be evaluated), and perhaps

other sources such as the results of Boolean keyword searches or documents found

by expert searchers in an interactive process.

Table 8.2: Calculating the kappa statistic.

 Judge 2 Relevance

 Yes No Total

Judge 1 Yes 300 20 320

Relevance No 10 70 80

 Total 310 90 400

Observed proportion of the times the judges

agreed

Pooled marginals

Probability that the two judges agreed by

chance

Kappa statistic

A human is not a device that reliably reports a gold standard judgment of relevance

of a document to a query. Rather, humans and their relevance judgments are quite

idiosyncratic and variable. But this is not a problem to be solved: in the final

analysis, the success of an IR system depends on how good it is at satisfying the

needs of these idiosyncratic humans, one information need at a time.

Nevertheless, it is interesting to consider and measure how much agreement

between judges there is on relevance judgments. In the social sciences, a common

measure for agreement between judges is the kappa statistic . It is designed for

categorical judgments and corrects a simple agreement rate for the rate of chance

agreement.

(46)

where is the proportion of the times the judges agreed, and is the

proportion of the times they would be expected to agree by chance. There are

choices in how the latter is estimated: if we simply say we are making a two-class

decision and assume nothing more, then the expected chance agreement rate is 0.5.

However, normally the class distribution assigned is skewed, and it is usual to

use marginal statistics to calculate expected agreement. There are still two ways

to do it depending on whether one pools the marginal distribution across judges or

uses the marginals for each judge separately; both forms have been used, but we

present the pooled version because it is more conservative in the presence of

systematic differences in assessments across judges. The calculations are shown in

Table 8.2 . The kappa value will be 1 if two judges always agree, 0 if they agree

only at the rate given by chance, and negative if they are worse than random. If

there are more than two judges, it is normal to calculate an average pairwise kappa

value. As a rule of thumb, a kappa value above 0.8 is taken as good agreement, a

kappa value between 0.67 and 0.8 is taken as fair agreement, and agreement below

0.67 is seen as data providing a dubious basis for an evaluation, though the precise

cutoffs depend on the purposes for which the data will be used.

Interjudge agreement of relevance has been measured within the TREC evaluations

and for medical IR collections. Using the above rules of thumb, the level of

agreement normally falls in the range of ``fair'' (0.67-0.8). The fact that human

agreement on a binary relevance judgment is quite modest is one reason for not

requiring more fine-grained relevance labeling from the test set creator. To answer

the question of whether IR evaluation results are valid despite the variation of

individual assessors' judgments, people have experimented with evaluations taking

one or the other of two judges' opinions as the gold standard. The choice can make

a considerable absolute difference to reported scores, but has in general been found

https://nlp.stanford.edu/IR-book/html/htmledition/assessing-relevance-1.html#tab:kappa
https://nlp.stanford.edu/IR-book/html/htmledition/footnode.html

to have little impact on the relative effectiveness ranking of either different

systems or variants of a single system which are being compared for effectiveness.

Relevance feedback and query expansion

In most collections, the same concept may be referred to using different words.

This issue, known as synonymy , has an impact on the recall of most information

retrieval systems. For example, you would want a search for aircraft to match plane

(but only for references to an airplane, not a woodworking plane), and for a search

on thermodynamics to match references to heat in appropriate discussions. Users

often attempt to address this problem themselves by manually refining a query, as

was discussed in Section 1.4 ; in this chapter we discuss ways in which a system

can help with query refinement, either fully automatically or with the user in the

loop.

The methods for tackling this problem split into two major classes: global methods

and local methods. Global methods are techniques for expanding or reformulating

query terms independent of the query and results returned from it, so that changes

in the query wording will cause the new query to match other semantically similar

terms. Global methods include:

 Query expansion/reformulation with a thesaurus or WordNet

(Section 9.2.2)

 Query expansion via automatic thesaurus generation (Section 9.2.3)

 Techniques like spelling correction (discussed in Chapter 3)

Local methods adjust a query relative to the documents that initially appear to

match the query. The basic methods here are:

 Relevance feedback (Section 9.1)

 Pseudo relevance feedback, also known as Blind relevance feedback

(Section 9.1.6)

 (Global) indirect relevance feedback (Section 9.1.7)

The Rocchio algorithm for relevance feedback

The Rocchio Algorithm is the classic algorithm for implementing relevance

feedback. It models a way of incorporating relevance feedback information into the

vector space model of Section 6.3 .

https://nlp.stanford.edu/IR-book/html/htmledition/the-extended-boolean-model-versus-ranked-retrieval-1.html#sec:boolean-querying
https://nlp.stanford.edu/IR-book/html/htmledition/query-expansion-1.html#sec:query-expansion
https://nlp.stanford.edu/IR-book/html/htmledition/automatic-thesaurus-generation-1.html#sec:automatic-thesaurus
https://nlp.stanford.edu/IR-book/html/htmledition/dictionaries-and-tolerant-retrieval-1.html#ch:spell
https://nlp.stanford.edu/IR-book/html/htmledition/relevance-feedback-and-pseudo-relevance-feedback-1.html#sec:relevance-feedback
https://nlp.stanford.edu/IR-book/html/htmledition/pseudo-relevance-feedback-1.html#sec:pseudo-rf
https://nlp.stanford.edu/IR-book/html/htmledition/indirect-relevance-feedback-1.html#sec:implicit-feedback
https://nlp.stanford.edu/IR-book/html/htmledition/the-vector-space-model-for-scoring-1.html#sec:vsm

Figure 9.3: The Rocchio optimal query for separating relevant and nonrelevant documents.

